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ABSTRACT

Background: Exocrine pancreatic insufficiency (EPI) is a serious condition characterized by a lack of  functional exocrine 
pancreatic enzymes and the resultant inability to properly digest nutrients. EPI can be caused by a variety of  disorders, including 
chronic pancreatitis, pancreatic cancer, and celiac disease. EPI remains underdiagnosed because of  the nonspecific nature of  
clinical symptoms, lack of  an ideal diagnostic test, and the inability to easily identify affected patients using administrative claims 
data. 

Objectives: To develop a machine learning model that identifies patients in a commercial medical claims database who likely 
have EPI but are undiagnosed.

Methods: A machine learning algorithm was developed in Scikit-learn, a Python module. The study population, selected from 
the 2014 Truven MarketScan® Commercial Claims Database, consisted of  patients with EPI-prone conditions. Patients were 
labeled with 290 condition category flags and split into actual positive EPI cases, actual negative EPI cases, and unlabeled cases. 
The study population was then randomly divided into a training subset and a testing subset. The training subset was used to 
determine the performance metrics of  27 models and to select the highest performing model, and the testing subset was used 
to evaluate performance of  the best machine learning model. 

Results: The study population consisted of  2088 actual positive EPI cases, 1077 actual negative EPI cases, and 437 530 
unlabeled cases. In the best performing model, the precision, recall, and accuracy were 0.91, 0.80, and 0.86, respectively. The 
best-performing model estimated that the number of  patients likely to have EPI was about 12 times the number of  patients 
directly identified as EPI-positive through a claims analysis in the study population. The most important features in assigning 
EPI probability were the presence or absence of  diagnosis codes related to pancreatic and digestive conditions.

Conclusions: Machine learning techniques demonstrated high predictive power in identifying patients with EPI and could 
facilitate an enhanced understanding of  its etiology and help to identify patients for possible diagnosis and treatment.

Keywords: machine learning, case-finding technique, claims data analysis, exocrine pancreatic insufficiency (EPI), identifying/
predicting undiagnosed EPI, predictive modeling
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Background

Exocrine pancreatic insufficiency (EPI) is a serious condition characterized by a lack of  functional exocrine 
pancreatic enzymes and the resultant inability to properly digest fats, carbohydrates, and proteins.1 Common 
pancreatic causes of  EPI include chronic pancreatitis, severe acute pancreatitis, pancreatic cancer, pancreatic 
surgery, and cystic fibrosis.1-3 Non-pancreatic causes of  EPI include a history of  celiac disease, diabetes mellitus, 
Crohn’s disease, gastric surgery, short bowel syndrome, and Zollinger-Ellison syndrome.1,3 The main symptoms 
of  EPI are steatorrhea (ie, excess fat in the stool), abdominal bloating/discomfort, and weight loss.1

Although an early and accurate diagnosis of  EPI is critically important to optimize patient outcomes,3,4 the 
condition remains underdiagnosed.1 In addition, there is a lack of  consensus regarding the best diagnostic 
approach, and experts have noted the non-reliability and non-specificity of  available diagnostic tests.1 Currently 
available diagnostic tests for EPI include fecal fat quantification, the fecal elastase-1 test, and the 13C-mixed 
triglyceride breath test.4 Diagnosing EPI is challenging because its symptoms may be vague or overlap with 
those of  other gastrointestinal disorders.1 Other barriers to the diagnosis of  EPI have also been identified: 
(1) currently available tests are cumbersome and unpleasant;5 (2) tests are not widely available or accurate for 
patients in the early to moderate stages of  EPI;5 (3) there is no International Classification of  Diseases, Ninth 
Revision, Clinical Modification (ICD-9-CM) or Current Procedural Terminology (CPT) code that definitively 
identifies a patient with EPI, thus tracking has been difficult from a claims perspective;6 and (4) use of  an 
International Classification of  Diseases, Tenth Revision (ICD-10) code introduced for EPI in October 2016 
may not yet be integrated into administrative claims data or electronic medical records (EMR). 

The precise incidence and prevalence of  EPI are difficult to determine due to its underdiagnosis; furthermore, 
medical statistics on EPI are usually not reported.1 Some data suggest, however, that the prevalence of  EPI in 
patients with chronic pancreatitis is 30% to 40% and that the prevalence of  EPI in patients with cystic fibrosis 
is 80% to 90%.2 Studies have also shown that more than 40% of  patients with type 1 diabetes mellitus and 
30% of  patients with type 2 diabetes develop mild to moderate EPI.2 At present, reliable estimates of  EPI 
prevalence in the general population are lacking.4

Left untreated, EPI can have a deleterious effect on quality of  life and may lead to the development of  nutritional 
deficiencies and subsequent malnutrition-related conditions.4 The goals of  EPI treatment are to alleviate the 
unpleasant clinical symptoms related to maldigestion and to correct nutritional deficiencies.7 Currently, EPI 
is treated with lifestyle modifications (ie, smoking cessation; alcohol abstinence; and the consumption of  
frequent, low-volume meals) and oral pancreatic enzyme replacement therapy (PERT), the latter of  which is 
the cornerstone of  EPI treatment.4 Guidelines established by international societies are largely in agreement 
that more aggressive treatment of  EPI is needed.5,8-12

The purpose of  the current study was to identify patients in a commercial medical claims database who likely 
had EPI but were undiagnosed. To that end, we performed a claims data analysis using machine learning, a data 
analytics approach that is being increasingly used as a predictive tool in the field of  medicine.13-24

Methods

Data Source

We used the 2014 Truven MarketScan® Commercial Claims Database (hereafter MarketScan) to identify the 
study population. MarketScan is a large dataset that contains enrollment data and health benefit claims data for 
more than 39 million commercially insured lives from more than 100 employer and health plan contributors.
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The enrollment data include beneficiary age, dependent status, and monthly eligibility status. The claims data 
include coding information (diagnosis, procedure, revenue, diagnosis-related group, and national drug codes), 
service dates, and site of  service.

Study Population

The source population consisted of  commercially insured individuals selected from the MarketScan database 
who were 0-64 years old at the end of  2014 and were active or disabled (not part-time or temporary) employees 
or their dependents. In addition, individuals were required to have prescription drug coverage for the entire 
duration of  their medical coverage period and could not be enrolled in capitated health plans. 

For modeling, we extracted all claims from the source data and constructed an enriched study population 
by selecting individuals who fell into broad categories of  diagnoses that are prone to EPI. These categories 
included inflammatory conditions of  the pancreas, other pancreatic conditions (including unspecified diseases 
of  the pancreas), malabsorption syndromes, inflammatory bowel disease, insulin-taking diabetes, and HIV; 
individuals who had undergone bariatric surgery were also included. We excluded individuals who had conditions 
that were almost certainly associated with EPI (ie, cystic fibrosis and pancreatic cancer) and those who had 
undergone radical pancreatic surgeries (ie, pancreaticoduodenectomy, radical subtotal pancreatectomy, or total 
pancreatectomy). It is highly likely that the excluded individuals would be recognized as being at high risk of  
EPI, thus we did not want their characteristics to overshadow the characteristics of  less EPI-prone cohorts. 
Non-insulin-dependent diabetics were also excluded from the study population after preliminary data analyses 
found a low association of  EPI in that group. See Table A1 in the Technical Appendix for a full list of  the 
conditions used to include and exclude patients from the study population.

Machine Learning Algorithm

Machine learning is a computer-based data analytics approach that automates model building through the use 
of  algorithms that iteratively learn from and adapt to subject data.25 To develop our models, we used the open 
source library Scikit-learn, a Python module featuring machine learning algorithms.26  

Machine learning uses terminology that differs from that of  statistical analysis, the latter of  which may be more 
familiar to the health care readership. A basic knowledge of  machine learning terminology, however, is needed 
to understand the methodology used in our analysis. See Table 1 for a comparison of  the terminologies used in 
machine learning and statistical analysis.

Machine learning often uses highly technical iterative processes and trials to develop workable models. A 
common practice in machine learning is to explore several approaches to improve model fit.

We used a three-step procedure to create the main input to our machine learning model. 

1) Two hundred and ninety condition category flags (features) were constructed. These categories were 
composed of  broad, clinically-related ranges of  various codes: 74  ICD-9-CM diagnosis code categories, 5 
ICD-9-CM procedure code categories, 37 CPT code categories, 70 revenue code (REVCODE) categories, 
and 104 national drug code (NDC) categories. 

2) Each claim for each member of  the study population was assigned a flag for each condition category to 
indicate whether the condition was present (flag = 1) or not present (flag = 0). 

3) Claim-level flags were summarized to create a single set of  the 290 condition category flags for each 
member in the study population. The value in each condition category indicated the total number of  
claims in that category. Patient age and sex, as well as prescription counts for patients who had been
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 treated with a PERT, were also used to create the machine learning model.

We used a nine-step procedure to create our machine learning model and to generate, validate, and assess the 
results.

1) The study population was divided into three groups: actual positive cases (patients believed to have EPI), 
actual negative cases (patients believed to not have EPI), and unlabeled cases (patients with unknown EPI 
status). Actual positive cases (or “true positives”) included patients who had filled ≥ 3 prescriptions for a 
PERT. Actual negative cases (or “true negatives”) included patients who had undergone a fecal elastase-1 
test (CPT code 82656) but had not filled a PERT prescription. 

2) The study population was randomly divided into an 80% training subset and a 20% testing subset. The 
training subset was used to determine the performance metrics and select the highest performing model, 
and the testing subset was used to evaluate performance of  the best-performing machine learning model 
using data not used to train or select the model.

3) A baseline model was created to predict the classification of  an observation based on several input 
variables – in this case, to classify whether a patient has or does not have EPI. The latter was accomplished 
using least absolute shrinkage and selection operator (LASSO) with logistic regression, a method that is 
commonly used to classify data.27 LASSO penalizes the absolute size of  the regression coefficients, which 
in practice, leads to sparse coefficients of  the input variables in the logistic regression and is helpful when 
there are many correlated input variables. 

4) Additional models were created using other machine learning techniques with different underlying 
frameworks to determine which framework was best for the input data and model goals. The additional 
machine learning techniques included gradient-boosted classification trees, support vector machines, and 
random forest. Random forest is an ensemble method that leverages a collection of  decision trees that 
generate a response when presented with a set of  features.

5) Adjustments were applied to handle “imbalanced data,” which occurs when one or more of  the binary 
classes is underrepresented, and included modifying class weights, oversampling, and undersampling. See 
Table A2 in the Technical Appendix.

6) A 3x3 nested cross validation process was applied to several random forest models to determine the 
hyperparameters (ie, the set of  parameters that defines the properties of  the model, such as the number 
of  decision trees in a random forest) and to generate performance metrics. This process was applied to 
the training subset and consisted of  two steps: outer cross validation and inner cross validation. In the 
outer cross validation step, the training subset was split into three folds (groups). Two of  the folds were 
used to train the model on the parameters, and the remaining fold acted as the validation set. This process 
was repeated until every fold acted as the validation set one time. Within the training folds assigned 
by the outer cross validation step, the folds were further split into three sub-folds for the inner cross 
validation process. Two of  the sub-folds were used to tune the parameters, and the remaining sub-fold 
acted as the validation set. The hyperparameters were optimized by selecting the best performing set, as 
measured by the average performance metrics over three validation sets through inner cross validation. 
The performance metrics of  the selected random forest models were then calculated in the validation set 
through outer cross validation. The inner cross validation process was repeated separately over the three 
outer cross validation splits; that is, we had three sets of  hyperparameters from three inner loops and 
three sets of  performance metrics from three outer loops. The performance metrics were averaged for 
the purpose of  choosing the best-performing model.28 See Tables A3 and A4 in the Technical Appendix.

7) The performance metrics of  27 models were examined. Model performance was evaluated using each 
patient’s outputted EPI probability. The metrics used to optimize hyperparameters or to compare the 
baseline model with other models included precision, recall, F1 score, Fbeta=10 score, positive-unlabeled 
(PU) score, and Brier score loss; see Table 2.

8) The best-performing model was retrained on the full 80% training subset and applied to the 20% 
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 testing subset to calculate the performance metrics. Results were summarized in a confusion matrix, which 
is a commonly used template for presenting the results of  binary classifications in machine learning. A 
receiver-operator characteristic curve was developed.

9) After assigning the probability of  EPI, we further examined patients’ claims to determine whether the 
probability assignments were clinically reasonable. To that end, we used two approaches. In the first 
approach, we extracted cohorts of  patients in the 10% to 20% EPI probability bucket and the 80% to 
90% EPI probability bucket and summarized the top 30 code counts for patients in each bucket. In the 
second approach, we generated a relative importance measure for each feature based on its unique impact 
on the overall Gini impurity of  the model. Gini impurity is a measure of  the randomness of  the model 
being evaluated, and the sum of  the relative Gini impurity measures for all features is 1.00. Our goal was 
to minimize the Gini impurity of  the model in order to optimize the accuracy of  patient classification. 

Table 1. Terminology Used in Machine Learning and Statistical Analysis
Machine Learning Statistical Analysis
Feature Explanatory variable
Confusion matrix Contingency table of  predicted and actual status
Recall Sensitivity 
Precision Positive predictive value
F1 score Harmonic mean of  sensitivity and positive predictive value

Table 2. Performance Metrics Definitions
Metric Definition

Precision Measure of  model exactness; the ratio of  successful model predictions over all cases 
predicted to be positive

Recall Measure of  model completeness; the ratio of  successful model predictions over all 
cases that are actual positives

F1 score Measure of  model accuracy; the harmonic mean of  precision and recall (reciprocal 
of  the mean of  the reciprocals of  precision and recall)

Fbeta=10 score Similar to F1 score with an additional parameter (beta) that assigns greater weight to 
the recall measure of  the model

Positive-unlabeled score Measure of  model performance that is positively correlated with the F1 score
Brier score loss Measure of  the mean squared differences of  the outcome and predictive probability

Results 

In total, 440 695 patients out of  the 39 million patients in the MarketScan database met the study inclusion criteria. 
Of  these patients, 2088 were actual positive EPI cases and 1077 were actual negative EPI cases. The remaining 
437 530 patients were unlabeled cases. Because actual positives and actual negatives were underrepresented, the 
data was considered imbalanced.

We found that the three models with the highest performance scores were all random forest models. The 
baseline LASSO model demonstrated the highest performance in recall, Brier score loss by labeled data, and 
F1 score; however, the baseline model was not the highest performing model overall because it generated 
an unreasonably high count of  positive cases in the unlabeled data (0.93). Three random forest models, 
which assumed that unlabeled data represented negative EPI cases, generated high recall and precision on 
the labeled data. These models also accurately estimated a small number (between 0.04 and 0.06) of  positive 
cases in the unlabeled data and a small Brier score loss (between 0.14 and 0.16) on the full dataset, thereby
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making them high-performing models. See Table 3.

Table 3. Results of  Baseline and High-performing Models
Baseline 1 2 3

Model Type LASSO Random Forest Random Forest Random Forest
Metrics

Unlabeled data Ignored 
unlabeled data

Assumed negative, 
ignored actual 
negative cases

Assumed negative, 
ignored actual 
negative cases

Assumed 
negative, ignored 
actual negative 
cases

Imbalanced data N/A Downsample, class 
weight

Downsample, 
subsample balanced 
weight

Repeated random 
subsampling

Validation method 80% / 20% split 
validation

Nested cross 
validation

Nested cross 
validation

Nested cross 
validation

Optimized metric in 
hyperparameter selection None F(beta=10) using 100 

random iterations

F(beta=10) × 100 + 
PU score using 100 
random iterations

F(beta=10) × 100 + 
PU score using 60 
random iterations

Scores
Fbeta=10 score (all data)  0.32  0.71  0.71  0.72 
PU score (all data)  0.93  9.22  12.45  10.69 
Recall (labeled data)  0.92  0.81  0.77  0.80
Brier score loss (labeled data)  0.10  0.14  0.16  0.15
Brier score loss (unlabeled data 
assumed negative)  0.60  0.06  0.03  0.04

F1 score (labeled data)  0.90  0.86  0.84  0.86
Precision (labeled data)  0.88  0.91  0.93  0.91
Probability of  unlabeled cases 
to be labeled as positive  0.93  0.07  0.04  0.06

LASSO: least absolute shrinkage and selection operator; PU: positive-unlabeled

For Model 3, the best performing of  the four models, we determined that there were 336 true-positive patients 
(ie, patients who were accurately predicted to have EPI) and 183 true-negative patients (ie, patients who were 
accurately predicted to not have EPI), with predicted EPI defined as a patient with an EPI risk of  ≥50%. There 
were 32 false-positive patients (type I error); these were patients who were predicted to have EPI but did not 
actually have it. There were 82 false-negative patients (type II error); these were patients who had EPI but were 
not predicted to have it. See Table 4, which shows the confusion matrix for the 88,140 patients in the testing 
subset.
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Table 4. Confusion Matrix of  Model -3
Predicted Condition

No EPI EPI

Actual Condition

No EPI 183
(True negatives)

32
(False positives, type I error)

EPI 82
(False negatives, type II error)

336
(True positives)

Unknown 82 546 4961
Note: The 2x2 cells shaded in gray represent the confusion matrix
EPI: exocrine pancreatic insufficiency

The number of  patients known to have EPI in the testing subset (82 false negatives + 336 true positives) was 
418. Of  the 87 507 previously unlabeled patients in the testing subset, 4961 patients (6%) were identified as 
being likely to have EPI, which is approximately 12 times the number of  patients in the study population who 
were identified as being positive for EPI.

From the confusion matrix, we determined key evaluation metrics pertaining to the performance of  Model 3, 
including precision, recall, and F1 score. Precision, the ratio of  true positives over the sum of  true positives 
and false positives (336/{32+336}), is a measure of  exactness and was found to be 0.91. Recall, the ratio of  
true positives over the sum of  true positives and false negatives (336/{82+336}), quantifies the completeness 
of  model results and was found to be 0.80. The F1 score, the harmonic mean of  precision and recall, depicted 
as the reciprocal of  the mean of  the reciprocals of  precision and recall ({0.91×0.80}/{0.91+0.80}×2), is a 
measure of  accuracy that was found to be 0.86, where 1.0 represents perfect accuracy. The area under the 
receiver-operator characteristic curve (AUROC) is a measure of  the predictability of  the model. An AUROC 
equal to 1.00 represents a model that perfectly predicts an outcome. An AUROC of  0.50 represents a model 
with no predictability. In our study, AUROC for the labeled data was found to be 0.94.

In the final step of  our study, we applied Model 3 to the 20% testing subset, which assigned each patient a 
probability of  having EPI. We observed that out of  a sample of  88 140 patients, 5329 patients (6%) were now 
captured as EPI patients, with EPI defined as a patient with an EPI risk of  ≥ 50%. If  the EPI risk threshold 
was increased to 75%, only 1376 patients (2%) were captured as EPI patients. See Table 5.

In practice, Model 3 could be further applied to the training subset or to new datasets to identify potential 
previously unidentified patients with EPI. It is important to note, however, that model performance will vary 
when applying any model to new datasets that differ significantly from the 80% training subset (eg, in terms 
of  population demographics or other characteristics). In such situations, the results should be interpreted with 
caution, and if  possible, model performance should be re-evaluated on the new population and data source.

From our lower (10% to 20%) and upper (80% to 90%) tail analysis for clinical reasonability, we observed that 
two CPT code features – Evaluation and Management (E&M) (99201 – 99499) and Pathology (80047 – 89398) 
– were the forerunners in both probability buckets, where nearly all patients had at least one E&M or Pathology 
claim. The finding was not unexpected, as the study population represented an enriched group of  patients with 
pancreatic conditions that would require laboratory work and diagnostic or management evaluations. These 
two features, therefore, were not key predictors in determining EPI probability. We observed several other 
overlapping features between the 10% and 20% EPI probability bucket and the 80% to 90% EPI probability 
bucket, such as Mental (diagnoses) and Radiology – diagnostic (procedures); however, in the 80% to 90% EPI 
probability bucket, more features related to conditions of  the pancreas and digestive system were found at the 
top of  the list than was the case in the 10% to 20% EPI probability bucket. See Tables 6a and 6b.
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Table 5. Probability of  EPI Assigned to Each Patient by Model 3
Probability of  EPI Number of  Patients Predicted to have EPI
0% - < 5% 35 868

Not likely to have EPI
5% - < 10% 18 022
10% - < 15% 11 895
15% - < 20% 7470
20% - < 25% 4186
25% - < 30% 2248

Possibly likely to have EPI
30% - < 35% 1085
35% - < 40% 711
40% - < 45% 671
45% - < 50% 655
50% - < 55% 719

Likely to have EPI
55% - < 60% 666
60% - < 65% 678
65% - < 70% 884
70% - < 75% 1006
75% - < 80% 767

Highly likely to have EPI
80% - < 85% 397
85% - < 90% 192
90% - < 95% 20
95% - 100% 0
Total
0% - < 25% 77 441
25% - < 50% 5370
50% - < 75% 3953
75% - < 100% 1376
EPI: exocrine pancreatic insufficiency
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Table 6a. Most Frequent Features in Patients with 10% to 20% EPI Probability

Feature Code Type
Portion of  

Patients with ≥1 
Observations

Average Number of  
Observations  for 
Patients  with ≥1 

Observations
Evaluation and Management CPT 100% 15.81
Pathology CPT 97% 28.03
Medicine CPT 90% 17.72
Special Encounters DIAG 78% 24.07
Other Symptoms DIAG 77% 21.96
Radiology CPT 74% 5.85
Cardiovascular CPT 73% 3.84
Metabolic DIAG 69% 24.45
Musculoskeletal DIAG 64% 24.15
Laboratory REVCODE 62% 16.59
Diabetes DIAG 56% 41.46
Hypertensive DIAG 56% 23.94
Ulcer Drugs NDC 55% 4.96
Other Analgesics NDC 55% 4.56
Antibiotics NDC 55% 2.22
Respiratory DIAG 54% 14.80
Other Special Encounters DIAG 52% 7.98
Insulin NDC 50% 7.08
Genitourinary DIAG 49% 25.70
Antihypertensives NDC 46% 6.43
Digestive DIAG 45% 15.10
Antihyperlipidemics NDC 44% 6.39
Pharmacy REVCODE 43% 4.48
Labs Vitamin Levels Test CPT 43% 2.56
Anesthesia CPT 42% 1.93
Mental DIAG 42% 17.15
Esophagus DIAG 40% 12.62
Radiology – Diagnostic REVCODE 40% 2.07
Antidepressants NDC 39% 6.96
Drugs Requiring Specific Identification REVCODE 38% 6.54
CPT: current procedural terminology; DIAG: diagnosis; EPI: exocrine pancreatic insufficiency; NDC: national drug code; 
REVCODE: revenue code
Note: Observations were tabulated at the claim level
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Table 6b. Most Frequent Features in Patients with 80% to 90% EPI Probability

Feature Code Type
Portion of  

Patients With ≥1 
Observations

Average Number of  
Observations for Patients 

With ≥1 Observations
Evaluation and Management CPT 100% 23.03
Pathology CPT 96% 35.25
Medicine CPT 83% 15.11
Other Pancreatic Conditions DIAG 82% 14.50
Inflammatory Conditions Of  Pancreas DIAG 81% 44.52
Special Encounters DIAG 76% 34.87
Other Symptoms DIAG 76% 35.14
Cardiovascular CPT 73% 4.35
Ulcer Drugs NDC 72% 6.03
Radiology CPT 69% 6.53
Other Analgesics NDC 67% 10.23
Symptoms (Abdominal And Pelvis) DIAG 65% 49.05
Laboratory REVCODE 65% 23.98
Musculoskeletal DIAG 63% 23.38
Digestive DIAG 58% 42.34
Metabolic DIAG 58% 33.28
Radiology Abdominal CPT 57% 4.77
Esophagus DIAG 55% 23.38
Mental DIAG 53% 34.26
Antibiotics NDC 53% 2.25
Other Special Encounters DIAG 53% 9.54
Respiratory DIAG 52% 26.16
Pharmacy REVCODE 50% 9.30
Digestive Surgery CPT 50% 4.90
Hypertensive DIAG 50% 34.33
Anesthesia CPT 49% 2.82
Genitourinary DIAG 48% 26.69
Emergency Room REVCODE 47% 5.09
Antidepressants NDC 45% 7.59
Drugs Requiring Specific Identification REVCODE 44% 8.47
CPT: current procedural terminology; DIAG: diagnosis; EPI: exocrine pancreatic insufficiency; NDC: national drug code; 
REVCODE: revenue code
Note: Observations were tabulated at the claim level

From our analysis for Model 3 of  the impact of  each feature on Gini impurity, we found that two features 
indicating pancreatic diagnoses were the most important determinates in assigning EPI probability. Table 7 
summarizes the top 30 features, which accounted for 90% of  the model’s decrease in Gini impurity.

Using the Gini impurity approach, we found that among patients with low EPI probability, the absence 
of  diagnosis codes related to conditions of  the pancreas and digestive system was the feature that 
contributed most to low-probability assignments. For example, a randomly selected patient who was 
assigned a <10% probability of  EPI did not have any diagnosis codes related to inflammatory conditions



Pyenson B, et al.

42 JHEOR. 2019;6(2):32-46 | www.jheor.org

of  the pancreas, other pancreatic conditions, or malabsorption syndromes, and was a younger patient (age 
37 years). Conversely, a randomly selected patient who was assigned a >90% probability of  EPI had been 
diagnosed with pancreatic conditions and malabsorption syndromes, was an older patient (age 55 years) and 
had received prescriptions for ulcer drugs.

Table 7. Summary of  Model 3 Feature Importance as Measured by Each Feature’s Contribution to 
Decrease in Gini Impurity

CPT: current procedural terminology; DIAG: diagnosis; NDC: national drug code; REVCODE: revenue code
Note: The sum of  all features’ contributions to the decrease in Gini impurity = 1.00

Discussion 

EPI is a serious condition that remains underdiagnosed because of  the nonspecific nature of  clinical symptoms, 
lack of  an ideal diagnostic test, and the inability to easily identify patients with EPI using administrative data. 
We performed an analysis using machine learning techniques to identify patients in the MarketScan database 
who likely had EPI but had not been diagnosed with the condition. For the study population, we identified 12 
likely EPI patients for every actual EPI patient, a finding that suggests a successful machine learning model for 
identifying likely undiagnosed patients despite current clinical and administrative barriers.
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Machine learning is still in its infancy, thus studies evaluating its value and applicability have understandably 
focused mainly on technical methodology, with leaders in the field sharing analytic techniques. In recent years, 
however, numerous studies have described clinical applications of  machine learning that might be accessible 
to healthcare decision-makers. For example, machine learning techniques have been used to predict a wide 
range of  events and outcomes in medicine, including early hospital readmissions,13 laboratory test results,14 
treatment requirements,21 treatment success,15,22 disease progression,18 disease complications,20 posttraumatic 
stress,19 suicide risk,16 graft failure after transplantation,17 optimal drug dosage,29 and adverse drug reactions.24 
Most notably, the use of  machine learning techniques has garnered much attention in several major therapeutic 
areas, including diabetes,20,30 cancer,31 cardiology,32 ophthalmology,21,33 and psychiatry.15,34,35 Two recent studies 
utilized machine learning in particularly novel ways – in one case, to evaluate the trend in sentiment toward 
papillomavirus vaccination using Twitter data,36 and in the other case, to predict swine movements within a 
regional program to improve the control of  infectious diseases in the US.37

The use of  machine learning offers practical solutions to real-world challenges in healthcare, even those subject 
to the limitations of  real-world data. Our findings showed that from a public health or market perspective, 
machine learning is a potentially useful tool to estimate the prevalence of  EPI, a condition known to be 
underdiagnosed. Indeed, the case-finding technique used in our study could be applied to other conditions that 
may be frequently undiagnosed or nearly impossible to identify in administrative claims data. It is important 
to note that administrative claims data, which are often used in real-world analytics, are readily available on 
the scale of  tens of  millions of  lives across multiple years and from virtually all sites of  care. A challenging 
future research endeavor would be to validate our model using EMR, a data source that is notoriously difficult 
to use on a large-scale basis. Although EMR data provide details of  patient complaints and diagnostic values, 
several barriers to its use should be recognized: the data are complex, patient information may be missing due 
to the use of  multiple providers who are not in the same system, and the consolidation and assemblage of  
information from different systems and multiple sites pose administrative challenges.

Most of  the models we tested in our study performed relatively well; however, we anticipate that additional 
machine learning and statistical methods used in future studies could potentially improve our probability 
estimates. In fact, recent studies have examined estimating class priors in unlabeled data and improving models 
being trained primarily on positive and unlabeled data.38,39 To further improve the metrics, a greater number of  
features – beyond the 290 used in our study – could be added to the inputs to refine the current EPI model, 
or additional populations could be included to profile for variant EPI subpopulations with mild to moderate 
pancreatic dysfunction (eg, non-insulin-dependent type 2 diabetics); examples include time between procedures, 
variables from previous years, and impressions of  causal or correlated conditions or treatments from clinical 
experts. Additional validation of  the model’s predictability could be achieved by following patients for several 
years and observing who started PERT therapy, or by mining EMR to look for an EPI diagnosis. Finally, an 
ICD-10 code for EPI, K86.81, was introduced in October 2016, thus the models used in our study could be 
revisited to use an actual EPI diagnosis code to identify EPI patients, in addition to using treatment with PERT 
to indicate actual positives for EPI.

We believe that machine learning models can be practical, cost-effective tools for organizations with the 
necessary resources, which include strong medical claims database capabilities and knowledge of  medicine, 
actuarial science, and statistics. By way of  example, our team consisted of  about a dozen individuals with 
diverse backgrounds, including actuarial, statistical, clinical, and healthcare data analytics, all of  whom worked 
substantially less than fulltime and largely completed the analysis within three months.

We acknowledge several limitations in our study. First, although we used the standard approach of  randomizing 
data into training and testing subsets, we could not verify the findings through chart audits. We regard the
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latter as an important future step and envision that an insurer could validate these findings through its case 
management efforts and further train the model to increase its accuracy. Second, the resources dedicated to 
running the models – both time and computer resources – could be constraints for organizations trying to 
apply our approaches. A small insurer, for example, may not have the resources to evaluate or implement 
the model. Third, the usual limitations of  administrative claims data also applied to our study. Claims data, 
although comprehensive and adequate in many ways, are subject to variation in provider coding practices and 
inaccuracies. The latter limitation, however, is not unique to our study, but rather reflects the status of  real-
world data that any organization implementing a case-finding technique would encounter.

Conclusions

Administrative claims data, although readily available on the scale of  tens of  millions of  lives, lack many of  
the clinical details that can be found in EMR; however, obtaining large-scale EMR data has proved to be 
difficult. Machine learning approaches applied to administrative claims data offer a fast and practical approach 
to researching important healthcare challenges.  

The high predictive power of  our EPI model shows that applying machine learning techniques to administrative 
claims data can offer practical and efficient solutions to understanding real-world healthcare challenges. Although 
definitive claims about the implications of  our findings on clinical practice cannot be made, we submit that our 
study has demonstrated the feasibility and potential value of  using machine learning as an efficient strategy for 
predicting EPI in undiagnosed patients and perhaps will inspire future researchers to improve our probability 
estimates and extend our findings.
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