

Journal of Health Economics and Outcomes Research

Online Supplementary Material

A Health Economic Analysis Exploring the Cost Consequence of Using a Surgical Site Infection Prevention Bundle for Hip and Knee Arthroplasty in Germany. *JHEOR*. 2023;10(2):132-140. doi:10.36469/jheor.2023.90651

Table S1: Full Efficacy Data

This supplementary material has been provided by the authors to give readers additional information about their work.

S2 Saunders R, et al

Table S1. Full	Efficacy Data
----------------	---------------

Parameter	Units	Base Case	Uncertainty	Distribution	Source
Discount rate (costs)	Proportion	0.00	0-0	None	Short time horizon, none used
Discount rate (benefits)	Proportion	0.00	0-0	None	Short time horizon, none used
Time in GW prior to being transferred to OR, high-risk	Days	0.50	0.45-0.55	Gamma	Assumption
Time in GW prior to being transferred to OR, low-risk	Days	0.50	0.45-0.55	Gamma	Assumption
Proportion receiving active pre-warming on ward, high-risk	Proportion	0.10	0.09-0.11	Beta	Assumption
Proportion receiving active pre-warming on ward, low-risk	Proportion	0.10	0.09-0.11	Beta	Assumption
Extra time in GW receiving active prewarming on ward, intervention bundle	Minutes	25.00	22.5-27.5	Gamma	Grote et al ¹
Extra time in GW receiving active prewarming on ward, SoC bundle	Minutes	25.00	22.5-27.5	Gamma	Grote et al ¹
Γime between active warming on ward and OR entry (interruption time)	Minutes	20.00	15-25	Gamma	Grote et al ¹
Proportion receiving active pre-warming n OR, high-risk	Proportion	0.10	0.09-0.11	Beta	Assumption
Proportion receiving active pre-warming n OR, low-risk	Proportion	0.10	0.09-0.11	Beta	Assumption
Fime spent receiving active pre-warming n OR, intervention bundle	Minutes	25.00	22.5-27.5	Gamma	Assumed as similar to ward
Time spent receiving active pre-warming n OR, SoC bundle	Minutes	25.00	22.5-27.5	Gamma	Assumed as similar to ward
Time between active warming in the OR and surgery start (interruption time)	Minutes	10.00	10-15	Gamma	Grote et al ¹
Patients without pre-warming who receive surgery with intraoperative warming, high-risk	Proportion	0.91	0.82-1	Beta	Frisch et al ²
Patients without pre-warming who receive surgery with intraoperative warming, low-risk	Proportion	0.91	0.82-1	Beta	Frisch et al ²
Hypothermic patients, high-risk, Following pre-OR active pre-warming and intraoperative warming	Proportion	0.13	0.11-0.14	Beta	Grote et al1
Hypothermic patients, low-risk, Following pre-OR active pre-warming and intraoperative warming	Proportion	0.13	0.11-0.14	Beta	Grote et al ¹
Hypothermic patients, high-risk, ntraoperative warming	Proportion	0.44	0.4-0.48	Beta	Frisch et al ²
Hypothermic patients, low-risk, ntraoperative warming	Proportion	0.44	0.4-0.48	Beta	Frisch et al ²
Hypothermic patients, high-risk, no active warming	Proportion	0.80	0.72-0.88	Beta	Assumption
Hypothermic patients, low-risk, no active warming	Proportion	0.80	0.72-0.88	Beta	Assumption
Hypothermic patients, high-risk, ollowing active pre-warming on ward and intraoperative warming	Proportion	0.07	0.07-0.08	Beta	Frisch et al ²
Hypothermic patients, low-risk, ollowing active pre-warming on ward	Proportion	0.07	0.07-0.08	Beta	Frisch et al ²

S3 Saunders R, et al

Table S1. Full Efficacy Data, cont'd

Parameter	Units	Base Case	Uncertainty	Distribution	Source
Proportion of TKHA patients not experiencing mortality, high-risk	Proportion	1.00	0.9-1	Beta	Prange et al ³
Proportion of TKHA patients not experiencing mortality, low-risk	Proportion	1.00	0.9-1	Beta	Prange et al ³
Mortality, superficial SSI (inpatient)	Proportion	0.00	0-0	Beta	Assumed 0 given short time horizon
Mortality, superficial SSI (outpatient)	Proportion	0.00	0-0	Beta	Assumed 0 given short time horizon
Mortality, deep SSI	Proportion	0.00	0-0	Beta	Assumed 0 given short time horizon
Mortality, deep SSI readmissions	Proportion	0.00	0-0	Beta	Assumed 0 given short time horizon
Superficial SSI risk factor: Patient risk categorization	RR	1.13	1.11-1.15	Log-normal	Hardtstock et al ⁴
Superficial SSI risk factor: Hypothermia prior to entering the GW	RR	1.21	0.95-1.54	Log-normal	Geurts et al ⁵
Deep SSI risk factor: Patient risk categorization	RR	1.13	1.11-1.15	Log-normal	Hardtstock et al ⁴
Deep SSI risk factor: Hypothermia prior to entering the GW	RR	1.21	0.95-1.54	Log-normal	Geurts et al ⁵
Deep SSI risk factor: Ioban™ Incise Drapes	RR	0.29	0.28-0.35	Log-normal	Bejko et al ⁶
Impact on hypothermia, Bair Hugger™ Temperature Management System	RR	0.71	0.64-0.78	Beta	Shaw et al ⁷

Abbreviations: GW, general ward; OR, operating room; SoC, standard of care; SSI, surgical site infection; TKHA, total hip and knee arthroplasty

REFERENCES

- 1. Bejko J, Tarzia V, Carrozzini M, et al. Comparison of efficacy and cost of iodine impregnated drape vs. standard drape in cardiac surgery: study in 5100 patients. *J Cardiovasc Transl Res.* 2015;8(7):431-437.
- 2. Frisch NB, Pepper AM, Rooney E, Silverton C. Intraoperative hypothermia in total hip and knee arthroplasty. Orthopedics. 2017;40(1):56-63.
- 3. Geurts M, Macleod MR, Kollmar R, Kremer PHC, van der Worp HB. Therapeutic hypothermia and the risk of infection: a systematic review and meta-analysis. *Crit Care Med.* 2014;42(2):231-242.
- Grote R; Wetz A, Bräuer A, Menzel M. (2020): Short interruptions between pre-warming and intraoperative warming are associated with low intraoperative hypothermia rates. Acta Anaesthesiol Scand. 2020;64(4):489-493.
- Hardtstock F, Heinrich K, Wilke T, Mueller S, Yu H. Burden of Staphylococcus aureus infections after orthopedic surgery in Germany. BMC Infect Dis. 2020;20(1):233.
- 6. Prange F, Seifert A, Piakong P, et al. Short-term mortality after primary and revision total joint arthroplasty: a single-center analysis of 103,560 patients. *Arch Ortho Trauma Surg.* 2021;141(3): 517-525.
- Shaw CA, Steelman VM, DeBerg J, Schweizer ML. Effectiveness of active and passive warming for the prevention of inadvertent hypothermia in patients receiving neuraxial anesthesia: a systematic review and meta-analysis of randomized controlled trials. J Clin Anesth. 2017;38:93-104.