
Chen Y, Chirikov VV, Marston XL, et al. Machine learning for precision 
health economics and outcomes research (P-HEOR): conceptual review of 
applications and next steps. JHEOR. 2020;7(1):35-42.
doi: 10.36469/jheor.2020.12698

Journal of Health Economics 
and Outcomes Research

Methodology and Health Care Policy

Machine Learning for Precision Health Economics and Outcomes Research 
(P-HEOR): Conceptual Review of Applications and Next Steps
Yixi Chen1,*, Viktor V. Chirikov2, Xiaocong L. Marston2,3, Jingang Yang4, Haibo Qiu5, Jianfeng Xie5, Ning Sun6, Chengming Gu7, Peng Dong1, 
Xin Gao2,3

1 Pfizer Investment Co. Ltd., Beijing, China
2 Real World Evidence, Pharmerit International, Bethesda, Maryland, United States
3 Pharmerit (Shanghai) Company Limited, Shanghai, China
4 Fuwai Hospital, Beijing, China
5 Zhongda Hospital, Southeast University, Nanjing, China
6 Easy Visible Sky Tree Technology (Beijing) Co., Ltd., Beijing, China
7 Sanofi (China) Investment Co. Ltd., Beijing, China

ARTICLE INFROMATION

Article history: 
Received Oct 07, 2019
Received in revised form Apr 06, 2020
Accepted Apr 13, 2020 

Keywords:
net monetary benefit, cost-effectiveness, 
patient heterogeneity; random forest

*Corresponding author: 
Tel.: +86 10 8516 7310
E-mail address: yixi.chen@pfizer.com

  Supplementary Material

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 
License (CCBY-4.0). View this license’s legal deed at http://creativecommons.org/licenses/by/4.0 and legal code at 
http://creativecommons.org/licenses/by/4.0/legalcode for more information.

ABSTRACT

Precision health economics and outcomes research (P-HEOR) integrates economic and clinical 
value assessment by explicitly discovering distinct clinical and health care utilization phenotypes 
among patients. Through a conceptualized example, the objective of this review is to highlight the 
capabilities and limitations of machine learning (ML) applications to P-HEOR and to contextualize 
the potential opportunities and challenges for the wide adoption of ML for health economics. We 
outline a P-HEOR conceptual framework extending the ML methodology to comparatively assess the 
economic value of treatment regimens. Latest methodology developments on bias and confounding 
control in ML applications to precision medicine are also summarized.

INTRODUCTION

Contemporary medical big data open the door for precision medicine 
(also known as stratified medicine and personalized medicine)—that 
is, evaluating and aligning health care for individual patients based on 
their disease susceptibility, prognostic and diagnostic information, and 
treatment response.1,2 Technological advancements in the availability of 
big data can play an important role in health economics and outcomes 
research (HEOR) as well,3 where precision medicine applications can 
help discover and align treatment pathways with the highest likelihood 
of treatment success and quality of life for specific patient clusters.1 Use 
of the term precision HEOR (P-HEOR) has been suggested to broaden 
the scope of precision medicine. P-HEOR integrates economic and 
clinical value assessment by explicitly discovering distinct clinical and 
health care utilization phenotypes to optimize the cost-effectiveness of 
the use of health care interventions.4,5

Yet, practical and methodological challenges exist in using medical 
big data for economic evaluations of precision medicine.6,7 Challenges 
relate to the presence of bias and confounding in observational studies, 
handling of missing data and clinical miscoding, absence of available 
health state utility values (used to calculate quality-adjusted life years 
[QALYs]) for population subgroups of interest,6 as well as lack of 
clear evidence on willingness-to-pay thresholds and reimbursement.7 
While these challenges are also present in traditional applications of 
health technology assessment, which perhaps may explain why patient 
heterogeneity is rarely looked into in cost-effectiveness assessments,8 
making causal inferences in the context of multiple identified P-HEOR 
cohorts could compound the problem.

Highlighting the aforementioned issues as possible reasons, a 
recent review identified no published economic evaluations using 
big data to inform precision medicine.6 Literature reviews have also 
brought up the point that the application of HEOR to precision
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Table 1. HEOR Applications to Precision Medicine as per Veenstra et al (2020)

Decision analysis and simulation modeling Trial-based economic evaluation Cost-effectiveness analysis

•  Quantify uncertainty and elucidate therapies’ 
benefits and harms in the absence of direct 

evidence

•  Direct estimates of therapies’ effect on 
healthcare economic burden and clinical 

outcomes

•  Inform decision-making with regard to 
treatment choices and reimbursement

medicine is still in its infancy.6,7 This does not mean, however, that 
development work is not already being conducted to identify 
opportunities and foundational frameworks for the application of 
health economics tools to precision medicine, as suggested by Veenstra 
et al. in Table 1.7

As the economic evaluation of observational data and generation 
of real-world evidence will remain an important topic in precision 
medicine,7 expert opinion suggests that contemporary advanced 
predictive algorithms such as machine learning (ML) should be 
explored as advanced tools for decision-making and cost-effectiveness 
analysis,6 consistent with those particular domains outlined in Table 
1. For example, when paired with clinical opinion from a health care 
professional, ML results can produce valuable insights into accelerating 
clinical workflow and optimizing therapeutic interventions and 
resource allocation.9

Aligned with recommendations to document challenges and 
potential solutions to support future developments in the application 
of health economics to precision medicine,6 the objective of this article 
is to highlight the capabilities and limitations of ML applications in 
P-HEOR through a conceptualized example. We contextualize how a 
P-HEOR framework centered on recursive partitioning ML methods 
can be used to examine heterogeneity of treatment effect and to assess 
patient subgroups in which a particular intervention can be cost-
effective versus another. We also summarize the latest methodology 
developments on how bias and confounding can be controlled for 
when ML techniques are applied to nonrandomized data for P-HEOR 
research purposes. While multiple types of ML models are available, 
this article focuses on the potential P-HEOR implementation of 
decision tree and random forest (RF) models, which are among 
the most widely used ML techniques. The clinical context of our 
conceptualized example is to identify specific P-HEOR subgroups 
among septic patients in an intensive care unit (ICU) who are at higher 
risk of longer length of stay (LOS).10

The reason why we have chosen sepsis as our example is that it is 
the leading cause of mortality worldwide11 and requires extended stay 
in an ICU, which can pose significant economic burden.12 Within a 
health care organization, predicting ICU LOS can inform planning to 
fulfill demand for ICU care (eg, number of beds, staffing).13 Regarding 
the importance of ML techniques in sepsis, a quality improvement 
team has already successfully implemented an ML-based prediction 
algorithm during regular care to identify patients with sepsis earlier, 
with 50% lower readmission rate and 60% lower in-hospital mortality, 
compared to the pre-implementation period.14 In another sepsis study, 
in-hospital mortality and LOS were significantly reduced in an arm of 
a randomized clinical trial evaluating the use of an ML-based sepsis 
surveillance system versus the control sepsis detector.15

DESCRIPTION OF RECURSIVE PARTITIONING 
METHODS FOR P-HEOR

The benefit of using ML over traditional techniques in precision 
medicine is that ML determines data-driven nonlinear and 
nonmonotone association rules by simultaneously processing a large 
number of predictors. The ML models do not need to be specified in 
advance, and the combinations of the resulting predictors could generate 
new evidence for patient subgroups.16 One such implementation of 
ML is RFs.

In short, the RF algorithm is comprised of multiple individual 
decision trees, where each decision tree represents a statistical model 
that is applied to a random sample of the analytic dataset. Unlike 
traditional linear regression models, where results are shown as a linear 
combination of estimated coefficients in front of the prespecified 
variables included in the model, results of decision tree models 
are represented hierarchically as the dataset is sequentially split in a 
binary fashion and patient cohorts of smaller and smaller sample sizes 
are identified. The RF methodology also has the advantage of being 
insensitive to multicollinearity. This is especially true when there are 
many related candidate predictors, such as multiple composite score 
indices. For comparison, conventional statistical models assume that 
the independent variables are not correlated. Such assumptions are 
often violated as the number of independent variables increases.

The implementation of the tree-growing procedure is controlled, 
in part, by splitting and stopping criteria such as the number of patient 
predictors to be selected at random during the tree-growing process. 
A single decision tree is sensitive to changes in the underlying data, as 
samples are drawn at random and may result in unstable tree structure 
and predictions. Practical guidance exists on how to optimize process 
parameters and criteria.17 The RF model is constructed by averaging the 
predictions across all grown trees to achieve more reliable predictions 
than single trees, but the forest is difficult to visually interpret. As a 
balance between interpretability and predictive accuracy, one (or a 
few) representative individual tree(s) with the smallest dissimilarity 
in predictions between the tree(s) and the overall forest can be 
identified and visualized.18,19 Metrics such as average squared errors in 
the validation set, out-of-bag estimates of error rates obtained from 
neighborhoods of representative trees, as well as sensitivity, specificity, 
and accuracy, can be compared to assess model performance.19

Previously, we outlined an easy-to-follow 10-step framework 
(Figure 1) on the use of RF models in health services research,18 which 
visualizes results in a decision tree format that is naturally aligned to 
assist clinical interpretation by physicians engaging patients in the 
decision-making process.18,20

The intent behind the framework is to do an exploratory 
correlation analysis of patient characteristics of interest, split the 
data in separate training and validation datasets, then grow and tune 
the parameters of the RF in the training dataset, and determine and 
visualize the representative tree of the RF that results in the predictions 
most similar to the overall forest. Only after comparing the predictive 
accuracy in a validation dataset can the representative tree’s terminal 
nodes be aggregated into logical precision medicine groupings. The last 
step is sensitivity analysis on the relative importance of each of the 
patient characteristics in the RF model. Detailed descriptions of the 
steps of the algorithm are presented in Table S1. For a comprehensive 
application of the algorithm, we encourage readers to refer to previously 
published work.18

We first show an example of how this RF model framework can 
be applied to identify patients with sepsis at high risk of longer LOS. 
The example covers stratification of the patient sample, as driven by 
the RF partitioning rules, into subcohorts of patients with higher and 
lower probability of LOS. We do not compare treatment agents for 
sepsis, do not attempt to make causal inferences, and do not conduct 
a formal cost-effectiveness analysis. We do, however, use our example 
as the technical foundation to introduce recent methodological 
developments and conceptually outline how the approach can be 
leveraged for P-HEOR in the near future.



37Chen Y, et al.

JOURNAL OF HEALTH ECONOMICS AND OUTCOMES RESEARCH

Figure 1. Tree-based algorithm framework that could be adapted to P-HEOR (adapted from Chirikov et al 2017)

 
Adapted from: Chirikov VV, Shaya FT, Onukwugha E, Mullins CD, Dosreis S, Howell CD. Tree-based Claims Algorithm for Measuring Pretreatment Quality of 
Care in Medicare Disabled Hepatitis C Patients. Med Care. 2017;55(12):e104-e112.

EXAMPLE OF RANDOM FORESTS APPLICATION

We used data from the large, publicly available Medical Information 
Mart for Intensive Care (MIMIC) III database comprising deidentified 
health-related data associated with over 40 000 patients who stayed 
in ICUs of the Beth Israel Deaconess Medical Center (Boston, MA) 
from 2001 through 2012. The database includes information on 
demographics, vital signs, laboratory test results, imaging reports, 
procedures, medications, and outcomes.21 For data management 
and creating the analytic dataset, we used SAS 9.4 (Cary, NC). 
For implementation of the RF, we used the caret (Classification 
And Regression Training) and party (A Laboratory for Recursive 
Partytioning) packages in R software (R Foundation for Statistical 
Computing, Vienna, Austria).

The study cohort included sepsis survivors aged 18 years or older 
with complete data for all study variables. A total of 1474 patients 
were eligible for the study (Figure S1). The endpoint was patients’ risks 
of having a prolonged stay in ICU, defined for practical purposes as 
a LOS ≥6 days, which was the observed median LOS in the sample. 
There were 656 (44.5%) septic patients who stayed at least 6 days in 
ICU.

Compared to sepsis patients without extended ICU stays, patients 
with extended ICU stays appeared to be younger (60.85 vs 64.64 
years of age), more were privately insured (35.8% vs 26.3%), and 
more had surgical ICU admissions (surgical ICU 17.5% vs 12.8%; 
trauma/surgical ICU 14.6% vs 7.0%; surgery recovery unit 5.8% vs 
2.8%). Patients with extended ICU stay had higher baseline rates of 
obesity (11.3% vs 5.1%) and cardiac arrhythmia (38.9% vs 32.4%), 
but lower rates of metastatic cancer (7.0% vs 13.1%). Patients with 
extended ICU stay scored higher on shock index (1.37 vs 1.17), 
systemic inflammatory response syndrome (SIRS) criteria (3.30 vs 

3.20), simplified acute physiology score (SAPS) II (46.0 vs 41.4), acute 
physiology score (APS) III (60.0 vs 54.1), logistic organ dysfunction 
score (LODS) (6.68 vs 5.25), sequential organ failure assessment 
(SOFA) (7.28 vs 5.83), and Oxford Acute Severity of Illness Score 
(OASIS) (40.7 vs 35.5).

Patient characteristics included in the algorithm-building process 
were demographics, laboratory values, and clinical characteristics 
captured from 12 hours before to 24 hours after the ICU admission. 
The RF was grown and the representative tree was extracted as per 
the 10-step framework previously described.18 In terms of the general 
accuracy, the overall RF model outperformed the representative tree 
model with an accuracy level of 0.7719 versus 0.7249 in the training 
set and 0.7273 versus 0.6955 in the testing set (Table 2). While the 
RF model resulted in more reliable predictions than its representative 
tree, the RF was difficult to interpret as individual trees are lost in the 
overall forest.

Figure 2 illustrates the representative tree of the RF model. As 
shown in the tree, patients were categorized into different risk groups 
based on selected features. High-risk patients were defined as having 
greater than 80% probability of having prolonged ICU stay. In the 
representative tree, two groups of patients had the highest risk of 
staying more days in ICU: the first group of high-risk patients used 
mechanical ventilation, used vasopressors, had urine output ≤ 1370 
mL/day, and had a SOFA score >8; the second group of high-risk 
patients also used mechanical ventilation and vasopressors, had urine 
output >1370 mL/day, and had a BUN/creatinine ratio >30. Of 
note, SAPS II at a threshold >56 or <56 produced two statistically 
significantly different subcohorts among the first group of patients, 
but we kept those subcohorts together as we deemed that they did 
not result in clinically significant differences in the probability of 
having longer LOS. Other gradients of increased probability of longer
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LOS were also indicated and were associated with SOFA score <8 or 
BUN/creatinine ratio <30, among those with mechanical ventilation. 
No use of mechanical ventilation had the lowest probability of extended 
LOS.

Figure S2 shows the importance level of each predictor on extended 
stay from the sensitivity analysis. Using mechanical ventilation was the 
most important prognostic feature, followed by composite severity 
scores (eg, LODS, APS III, OASIS, and SAPS II). Vasopressor use 
was also among the top prognostic features. Other identified clinical 
features were consistent with the literature.14,22

CONCEPTUAL FRAMEWORK FOR IDENTIFYING 
P-HEOR COHORTS

In the application of the RF methodology described previously, the 
representative tree was easy to interpret, as high-risk patients were 

visualized into separate groups based on their characteristics. We would 
like to introduce the concept that similar RF methodology can be 
applied to modeling all-inclusive HEOR outcomes of interest, such as 
incremental cost-effectiveness ratios (ICER) and net monetary benefit 
(NMB).

Less than 20 years ago, Hoch, Willan, and Briggs introduced 
the net benefit regression framework that combined the statistical 
approaches of health econometrics with cost-effectiveness analysis 
(CEA)23 and allowed researchers to tackle HEOR research questions 
using observational data by allowing them to monetize treatment 
benefit as well as adjust for imperfect randomization or other covariate 
imbalances. In general terms, for two treatments it can be expressed as

ΔNMB=NMB1–NMB0= λ · (E1–E0)–(C1–C0)

where subscript 1 designates the treatment of interest, subscript 0 
designates the standard of therapy arm, λ is the willingness-to-pay

Table 2. Predictive Performance Comparison

Machine Learning model Random Forest (RF) Representative Tree from RFa

Parameter Train Dataset Test Dataset Train Dataset Test Dataset

Accuracy 0.7719 0.7273 0.7249 0.6955

Kappa 0.5384 0.4412 0.4387 0.3729

Sensitivity 0.7455 0.6327 0.6523 0.5714

Specificity 0.7931 0.8033 0.7830 0.7951

Positive Predictive Value 0.7429 0.7209 0.7068 0.6914

Negative Predictive Value 0.7954 0.7313 0.7375 0.6978

Balanced Accuracy 0.7693 0.7180 0.7177 0.6833
NOTE: athe best-performing tree in the forest

Figure 2. A Representative Tree of the Random Forest (RF) Modela

aShaded boxes represent the probability of a prolonged stay in ICU, defined as the median LOS ≥ 6 days. The red boxes highlight the patient groups with the highest 
probability of a prolonged LOS in ICU.
Abbreviations: BUN, Blood urea nitrogen; SOFA, Sequential Organ Failure Assessment; SAPSII, Simplified acute physiology score (SAPS) II. Care units: MICU, 
Medical Intensive Care Unit; SICU, Surgical Intensive Care Unit; CCU, Cardiac Care Unit; CSRU, Cardiac Surgery Recovery Unit; TSICU, Trauma Surgical 
Intensive Care Unit.
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parameter of the decision maker, the difference (E1–E0) is the average 
difference in clinical outcomes, and the difference (C1–C0) is the 
difference in average total costs. The incremental NMB (ΔNMB) is 
positive when the monetary valuation of treatment benefits outweighs 
the incremental costs, as well as when the cost savings of using a cheaper 
standard of therapy are greater than the decrement in forgone clinical 
benefits (eg, due to an innovative experimental therapy). A follow-up 
article introduced an extension to the net benefit regression framework 
by allowing for adjustment for prognostic variables and examination of 
prespecified subgroups with potentially differential ΔNMB.24

Our proposed conceptual P-HEOR framework is a data-driven 
approach using model-based extension of the RF methodology as 
the technical foundation to reveal clinically relevant patient groups 
in which both differential treatment effects and costs are optimized 
(Figure 3).25 This idea follows up on other recent work supporting 
innovation in regression-based approaches to patient-centered CEA,26 
as well as subgroup and individual treatment effect prediction using 
recursive partitioning RF.27,28

Model-based recursive partitioning RF produces a segmented 
model in which patient subgroups emerge with differential treatment 
effects,28,29 if treatment regimens are also included in the set of 
predictors. The implementation of the tree-growing procedure is again 
controlled by multiple parameters, similar to the algorithm described 
in the previous section, which can be fine-tuned by iteratively varying 
the values of each parameter and empirically selecting the combination 

of parameters yielding the lowest prediction error.17

The treatment effect, say, between intervention A and B could 
be covariate- and bias-adjusted for potential imbalance between 
underlying patient characteristics using randomized clinical data,30 
as well as if applied to nonrandomized observational data.31 Future 
developments in the implementation of ML algorithms will not only 
allow for covariate adjustment,32 but also control for informative 
censoring of costs via propensity score weights33 and provide an 
overall flexible statistical framework able to handle adjusted subgroup 
identification among two or more treatments.34 For example, Yang et 
al. have recently applied their causal interaction trees methodology, 
which incorporates inverse probability weighting, g-formula, and 
doubly robust estimators during the decision tree construction, to 
the observational Study to Understand Prognoses and Preferences for 
Outcomes and Risks of Treatments (SUPPORT).35 The authors found 
that the treatment effect of right heart catheterization depended on the 
2-month probability of surviving, similar to other published research 
that examined this criterion in prespecified subgroup analysis.36

Figure 3. Conceptual Illustration of Causal Decision Tree to Identify P-HEOR Subgroups with Differential Cost-Effectiveness Outcomes

Abbreviations: No., Number; ICER, Incremental Cost-Effectiveness Ratio; NMB, Net Monetary Benefit.
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DISCUSSION

While most applications of HEOR and CEA to precision medicine 
have focused on pharmacogenomics37 to assess the value of precision 
testing to diagnose patients and align them with the appropriate 
targeted oncologic agent(s),7 there is still a paucity of published 
research evaluating which precision patient subgroups can benefit from 
a particular cost-effective treatment regimen.6 Some of the reasons 
are methodological and relate to our core understandings of bias and 
confounding. Individual treatment effect prediction could be hindered 
when predictive patient characteristics are also influencing treatment 
assignment27 or when the scales for capturing a particular covariate are 
subject to measurement error, such as in mental health conditions.38 
In clinical drug development for precision medicine, while most novel 
analytic methods may perform well in cohorts with large sample sizes 
and sizable treatment effects,39 in real-world scenarios many of these 
methods have been found to perform poorly (as perhaps traditional 
statistical approaches would) on at least one of seven criteria: (i) bias 
in selection of subgroup variables, (ii) probability of false discovery, 
(iii) probability of identifying correct predictive variables, (iv) bias in 
estimates of subgroup treatment effect, (v) expected subgroup size, 
(vi) expected true treatment effect of subgroups, and (vii) subgroup 
stability.40

In our own example of applying the RF methodology to a cohort 
of patients with sepsis, we likely encounter the same issues we have 
mentioned. Additionally, by focusing on survivors only, our example is 
not representative of the general population of sepsis patients in ICU. 
However, we do hope that with future methodological developments, 
such as the application of causal interaction trees in the RF or other ML 
ensemble methods,40 novel methods would be seen as less of a black box 
and subject to criticism.6,41 Going forward, achieving unbiased variable 
selection, unbiased estimates of subgroup treatment effects, and 
probability of false discovery,40 as well as the publication of several case 
studies on prospective, controlled, and transparent validation,42 would 
be paramount before we see such techniques more frequently used for 
P-HEOR. This is not to suggest that there are no attempts to generate 
foundational evidence for the next wave of P-HEOR. A prime example 
of this is the Personalized Risk Information in Cost-Effectiveness 
Studies (PRICES) project, funded by the National Institutes of Health.7 
Using risk models, the project aimed to understand how each patient’s 
individualized risk of experiencing adverse health outcomes can help 
clinicians better tailor care and resources.43 Additionally, ML analyses 
seem to be gaining traction as the toolbox of interest to reanalyze 
randomized clinical trials, where the risk of treatment selection bias 
may be somewhat limited.44,45

The expectation is that with the pace of analytic innovation, 
many of the issues we have raised could be resolved in the years to 
come. We have presented a P-HEOR conceptual framework that is 
built on RF ensemble methods but also has the objective of identifying 
a single representative decision tree in which clinically interpretable 
subgroups could be used for individualized prediction. The successful 
application of the P-HEOR conceptual framework would rely on the 
granular availability of life expectancy, utility, and costs so that they 
are representative of the identified unique precision subgroups. This 
is important as input choice solely based on population averages may 
widely influence value-based decision-making for individual patients.8 
Last but not least, use of the framework would be dependent on the 
wider adoption of a broader concept of value including moving toward 
a “net monetary benefit” comparison by monetizing the QALY as 
well as agreeing via multicriteria deliberative processes what the most 
appropriate willingness-to-pay thresholds λ would be for each precision 
cohort.46

CONCLUSIONS

In the era of big data, P-HEOR can benefit from ML optimization 
to identify patient cohorts with different risk-benefit profiles in terms 
of both clinical and economic outcomes. We propose a conceptual 
P-HEOR framework that holds the promise of precisely assessing the 
value of a specific treatment in heterogeneous subgroups using real-
world evidence. However, methodological challenges still remain before 
we see a wave of reliably conducted P-HEOR analyses. As prediction 
accuracy in health economics is always highly dependent on the quality 
of the data and methods, future efforts should focus on applying the 
latest statistical and framework innovations for value assessment to 
high-quality real-world data.
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